Fertility

Nutritional Foundation for Healthy Fertility with MAXMIL®

The success of pregnancy and the health of future generations are largely determined from the preconception phase. Infertility has become a global issue, affecting around 15% of couples of reproductive age. In 2021, Indonesia ranked second in infertility prevalence among Asia-Pacific countries.

The causes of infertility are highly complex, ranging from lifestyle factors (stress, smoking, obesity), environmental exposures (pollutants, pesticides, heavy metals), to underlying health problems such as PCOS, endometriosis, and hormonal imbalances. Assisted Reproductive Technology (ART), including In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI), offers hope, but remains limited by high costs, invasive procedures, variable success rates, and its inability to address the root causes—namely, the quality of gametes.

Micronutrients: The Foundation of Fertility

Micronutrients are now recognized as critical determinants in cellular processes that support gamete quality (sperm and oocytes) and successful conception. Their roles include:

  1. Supporting healthy gametogenesis through DNA synthesis, meiosis, and maturation of sperm and oocytes.

  2. Providing cellular protection by enhancing antioxidant defenses against oxidative stress that damages gamete DNA.

  3. Regulating hormones, as certain vitamins and minerals influence the production of testosterone, estrogen, and thyroid hormones.

  4. Ensuring healthy gene expression through epigenetic regulation and DNA methylation from the earliest stages of embryogenesis.

Micronutrient deficiencies have been proven to reduce sperm and oocyte quality, impair ovulation, increase DNA fragmentation, and lower the success rate of both natural conception and ART. Acting as enzymatic cofactors, micronutrients optimize metabolic pathways essential for high-quality gamete production, especially during the periconceptional phase.

MAXMIL®: Complete Nutritional Support for Fertility

MAXMIL® is formulated with 18 essential micronutrients that work synergistically to support fertility in both men and women:

  • 5-MTHF (Active Folate): Supports DNA synthesis, gamete quality, and lowers miscarriage risk.

  • Vitamin K2 (MenaQ7®), Coral Calcium, Vitamin D3, and Magnesium: Work together to prevent calcium paradox and ensure calcium is directed to bones and fetal organs.

  • DHA (Omega-3): Enhances sperm and oocyte membrane fluidity, improving embryo quality.

  • Vitamins E & C: Powerful antioxidants protecting gamete DNA from oxidative stress.

  • Vitamin D3: Improves testosterone levels, sperm motility, oocyte quality, and embryo implantation.

  • Zinc & Magnesium: Key cofactors for spermatogenesis, meiosis, chromatin integrity, and germ cell energy.

  • Vitamin A (Beta-Carotene): Supports germ cell maturation and improves oocyte and embryo quality.

  • B-Complex Vitamins (B1, B2, B6, B12): Essential for energy metabolism, DNA methylation, sperm quality, and oocyte maturation.

  • Biotin & Nicotinamide (B3): Maintain mitochondrial energy metabolism in gametes and genomic stability.

  • Iron & Iodine: Support DNA synthesis, cellular energy, thyroid function, ovulation, and follicular growth.

The Role of Folate and 5-MTHF (Active Folate) in MAXMIL®

Folate is crucial for DNA synthesis and epigenetic methylation, both essential for gamete formation and embryo development. However, regular folic acid requires conversion by the methylenetetrahydrofolate reductase (MTHFR) enzyme. In individuals with MTHFR polymorphisms (C677T/A1298C)—affecting up to 42% of the Southeast Asian population—the efficiency of this conversion can be reduced by up to 70%.

The consequences include:

  • Elevated homocysteine levels → reduced gamete quality and higher miscarriage risk.

  • Accumulation of unmetabolized folic acid (UMFA) → linked to fertility and pregnancy complications.

5-MTHF (Active Folate) in MAXMIL® provides a direct solution:

  • Already in its active form, ready to be used by the body without reliance on MTHFR.

  • More efficient in raising blood folate levels and reducing homocysteine.

  • Eliminates the risk of UMFA buildup.

Clinical studies show that 5-MTHF supplementation in IVF women improves oocyte and embryo quality, as well as pregnancy rates. In a study of 33 couples with recurrent miscarriages, 5-MTHF therapy for 4 months led to 26 successful pregnancies (86.7%), both naturally and via ART.

Conclusion

A new paradigm in fertility highlights the importance of nutritional optimization from the preconception stage. MAXMIL® provides a comprehensive formulation that:

  1. Improves sperm and oocyte quality

  2. Maintains hormonal balance

  3. Protects DNA and supports epigenetic regulation

  4. Creates the best environment for successful pregnancy

The inclusion of 5-MTHF (Active Folate) in MAXMIL® is a specific solution for couples with folate deficiency or MTHFR polymorphisms, clinically proven to enhance conception and healthy pregnancy outcomes. With this approach, fertility is not solely dependent on invasive medical technologies, but can be nutritionally programmed to build the foundation of a healthier generation.


References:

  • Chao, H. H., Zhang, Y., Dong, P. Y., Gurunathan, S., & Zhang, X. F. (2023). Comprehensive review on the positive and negative effects of various important regulators on male spermatogenesis and fertility. Frontiers in nutrition, 9, 1063510. https://doi.org/10.3389/fnut.2022.1063510 
  • Schaefer, E., & Nock, D. (2019). The impact of preconceptional Multiple-Micronutrient supplementation on female fertility. Clinical Medicine Insights Women S Health, 12, 1179562X1984386. https://doi.org/10.1177/1179562x19843868 
  • Swales, D. A., Davis, E. P., Mahrer, N. E., Guardino, C. M., Shalowitz, M. U., Ramey, S. L., & Schetter, C. D. (2022). Preconception maternal posttraumatic stress and child negative affectivity: Prospectively evaluating the intergenerational impact of trauma. Development and Psychopathology, 35(2), 619–629. https://doi.org/10.1017/s0954579421001760
  • Abdullah, M. R. T., Suryoadji, K. A., Fakhri, A., & Hestiantoro, A. (2025). The impact of micronutrient supplementation on the outcome of In Vitro Fertilization: A comprehensive systematic review of current studies. Majalah Obstetri & Ginekologi, 33(1), 65–73. https://doi.org/10.20473/mog.V33I12025.65-73
  • Luo, Y., Hong, C., Fan, H., Huang, Y., Zhong, P., Zhao, Y., & Zheng, X. (2024). Trends and Distribution of Infertility - Asia Pacific Region, 1990-2021. China CDC weekly, 6(28), 689–694. https://doi.org/10.46234/ccdcw2024.155 
  • Lipovac, M., Nairz, V., Aschauer, J., & Riedl, C. (2021). The effect of micronutrient supplementation on spermatozoa DNA integrity in subfertile men and subsequent pregnancy rate. Gynecological Endocrinology, 37(8), 711–715. https://doi.org/10.1080/09513590.2021.1923688 
  • Chavarro, J. E., Rich-Edwards, J. W., Rosner, B. A., & Willett, W. C. (2007). Use of multivitamins, intake of B vitamins, and risk of ovulatory infertility. Fertility and Sterility, 89(3), 668–676. https://doi.org/10.1016/j.fertnstert.2007.03.089
  • Servy, E. J., Jacquesson-Fournols, L., Cohen, M., & Menezo, Y. J. R. (2018). MTHFR isoform carriers. 5-MTHF (5-methyl tetrahydrofolate) vs folic acid: a key to pregnancy outcome: a case series. Journal of Assisted Reproduction and Genetics, 35(8), 1431–1435. https://doi.org/10.1007/s10815-018-1225-2
  • Sumber:
  • Chen, L., Chen, H., Wang, X., Wei, B., Wu, Z., Chen, S., Wang, B., Huang, H., & Jin, L. (2021). Association of homocysteine with IVF/ICSI outcomes stratified by MTHFR C677T polymorphisms: a prospective cohort study. Reproductive BioMedicine Online, 43(1), 52–61. https://doi.org/10.1016/j.rbmo.2021.04.009
  • Cirillo, M., Coccia, M. E., Attanasio, M., & Fatini, C. (2021). Homocysteine, vitamin B status and MTHFR polymorphisms in Italian infertile women. European Journal of Obstetrics & Gynecology and Reproductive Biology, 263, 72–78. https://doi.org/10.1016/j.ejogrb.2021.06.003
  • Erdoğan, K., Sanlier, N. T., & Sanlier, N. (2023). Are epigenetic mechanisms and nutrition effective in male and female infertility?. Journal of nutritional science, 12, e103. https://doi.org/10.1017/jns.2023.62
  • Li, F., Qi, J., Li, L., & Yan, T. (2024). MTHFR C677TMTHFR A1298CMTRR A66G and MTR A2756G polymorphisms and male infertility risk: a systematic review and meta-analysis. Reproductive Biology and Endocrinology, 22(1). https://doi.org/10.1186/s12958-024-01306-7 
  • Amrani-Midoun, A., et al. (2022). MTHFR C677T and A1298C polymorphisms: global frequency distribution and ethnic variability. Gene Reports, 28, 101606. https://doi.org/10.1016/j.genrep.2022.101606 
  • Liang, X., Gong, F., Lin, G., Liu, H., & Liu, J. (2021). Association of homocysteine with IVF/ICSI outcomes stratified by MTHFR C677T polymorphisms: a prospective cohort study. Reproductive Biomedicine Online, 42(6), 1071–1079. https://doi.org/10.1016/j.rbmo.2021.03.001 
  • Rai, V. (2014). Prevalence of C677T polymorphism of MTHFR gene in global population. International Journal of Health Sciences, 8(1), 54–65. https://doi.org/10.12816/0006073
  • Di Stefano, C., Tosto, V., Villani, M. T., et al. (2021). Homocysteine, vitamin B status and MTHFR polymorphisms in Italian infertile women. Journal of Assisted Reproduction and Genetics, 38(4), 889–898. https://doi.org/10.1007/s10815-021-02133-w 
  • Bradbury, I., Williams, L. M., & Lamers, Y. (2014). Folic acid handling by the human gut: Implications for food fortification and supplementation. The American Journal of Clinical Nutrition, 100(5), 1258–1264. https://doi.org/10.3945/ajcn.114.089342
  • Cochrane, K. M., Bone, J. N., Karakochuk, C. D., & Bode, L. (2024). Supplementation with (6S)-5-methyltetrahydrofolic acid appears as effective as folic acid in maintaining maternal folate status while reducing unmetabolised folic acid in maternal plasma: A randomised trial of pregnant women in Canada. British Journal of Nutrition, 131(1), 92–102. https://doi.org/10.1017/S0007114523001733
  • Samaniego-Vaesken, M. L., Morais-Moreno, C., Partearroyo, T., & Varela-Moreiras, G. (2024). Supplementation with folic acid or 5-methyltetrahydrofolate and prevention of neural tube defects: An evidence-based narrative review. Nutrients, 16(18), 3154. https://doi.org/10.3390/nu16183154 
  • Nafrialdi, N., & Suyatna, F. D. (2024). PHARMACOKINETIC STUDY OF HY-FOLIC® AND FOLIC ACID IN HEALTHY VOLUNTEERS. International Journal of Applied Pharmaceutics, 64–68. https://doi.org/10.22159/ijap.2024v16i6.51874 
  • Mazza, A., Cicero, A. F., Ramazzina, E., Lenti, S., Schiavon, L., Casiglia, E., & Gussoni, G. (2016). Nutraceutical approaches to homocysteine lowering in hypertensive subjects at low cardiovascular risk: a multicenter, randomized clinical trial. PubMed, 30(3), 921–927. https://pubmed.ncbi.nlm.nih.gov/27655522 
  • Boxmeer, J. C., Smit, M., Utomo, E., Romijn, J. C., Eijkemans, M. J., Lindemans, J., Laven, J. S., Macklon, N. S., Steegers, E. A., & Steegers-Theunissen, R. P. (2008). Low folate in seminal plasma is associated with increased sperm DNA damage. Fertility and Sterility, 92(2), 548–556. https://doi.org/10.1016/j.fertnstert.2008.06.010
  • Powers, H. J. (2003). Riboflavin (vitamin B-2) and health. American Journal of Clinical Nutrition, 77(6), 1352–1360. https://doi.org/10.1093/ajcn/77.6.1352 
  • Yao, W., Zhang, J., Yan, W., Xie, D., Tuo, P., Liu, J., Zhao, X., Xiong, Y., Li, Y., & Pan, T. (2025). Joint and individual associations between multiple vitamins and sperm quality in adult men. Frontiers in nutrition, 12, 1534309. https://doi.org/10.3389/fnut.2025.1534309
  • Kalthur, G., Salian, S. R., Keyvanifard, F., Sreedharan, S., Thomas, J. S., Kumar, P., & Adiga, S. K. (2012). Supplementation of biotin to sperm preparation medium increases the motility and longevity in cryopreserved human spermatozoa. Journal of Assisted Reproduction and Genetics, 29(7), 631–635. https://doi.org/10.1007/s10815-012-9760-8
  • Bai, X., & Wang, P. (2022). Relationship between sperm NAD + concentration and reproductive aging in normozoospermia men:A Cohort study. BMC Urology, 22(1). https://doi.org/10.1186/s12894-022-01107-3 
  • Zhou, X., Shi, H., Zhu, S., Wang, H., & Sun, S. (2022). Effects of vitamin E and vitamin C on male infertility: a meta-analysis. International urology and nephrology, 54(8), 1793–1805. https://doi.org/10.1007/s11255-022-03237-x
  • Jensen, M. B., Lawaetz, J. G., Andersson, A., Petersen, J. H., Nordkap, L., Bang, A. K., Ekbom, P., Joensen, U. N., Prætorius, L., Lundstrøm, P., Boujida, V. H., Lanske, B., Juul, A., & Jørgensen, N. (2016). Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Human Reproduction, 31(8), 1875–1885. https://doi.org/10.1093/humrep/dew152 
  • Ito, A., Shirakawa, H., Takumi, N., Minegishi, Y., Ohashi, A., Howlader, Z. H., Ohsaki, Y., Sato, T., Goto, T., & Komai, M. (2011). Menaquinone-4 enhances testosterone production in rats and testis-derived tumor cells. Lipids in health and disease, 10, 158. https://doi.org/10.1186/1476-511X-10-158
  • Hogarth, C. A., & Griswold, M. D. (2010). The key role of vitamin A in spermatogenesis. The Journal of clinical investigation, 120(4), 956–962. https://doi.org/10.1172/JCI41303 
  • González-Ravina, C., Aguirre-Lipperheide, M., Pinto, F., Martín-Lozano, D., Fernández-Sánchez, M., Blasco, V., Santamaría-López, E., & Candenas, L. (2018). Effect of dietary supplementation with a highly pure and concentrated docosahexaenoic acid (DHA) supplement on human sperm function. Reproductive Biology, 18(3), 282–288. https://doi.org/10.1016/j.repbio.2018.06.002 
  • Wong, W. Y., Merkus, H. M., Thomas, C. M., Menkveld, R., Zielhuis, G. A., & Steegers-Theunissen, R. P. (2002). Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertility and Sterility, 77(3), 491–498. https://doi.org/10.1016/s0015-0282(01)03229-0 
  • Akbari, H., Elyasi, L., Khaleghi, A. A., & Mohammadi, M. (2023). The effect of zinc supplementation on improving sperm parameters in infertile diabetic men. The Journal of Obstetrics and Gynecology of India, 73(4), 316–321. https://doi.org/10.1007/s13224-023-01767-7
  • Valsa, J., Skandhan, K. P., Gusani, P., Khan, P. S., & Amith, S. (2012). Quality of 4-hourly ejaculates - levels of calcium and magnesium. Andrologia, 45(1), 10–17. https://doi.org/10.1111/j.1439-0272.2012.01301.x 
  • Jensen, M. B., Lawaetz, J. G., Andersson, A., Petersen, J. H., Nordkap, L., Bang, A. K., Ekbom, P., Joensen, U. N., Prætorius, L., Lundstrøm, P., Boujida, V. H., Lanske, B., Juul, A., & Jørgensen, N. (2016). Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Human Reproduction, 31(8), 1875–1885. https://doi.org/10.1093/humrep/dew152 
  • Krassas, G. E., Poppe, K., & Glinoer, D. (2010). Thyroid function and human reproductive health. Endocrine Reviews, 31(5), 702–755. https://doi.org/10.1210/er.2009-0041
  • Zhang, L., Wu, L. M., Xu, W. H., Tian, Y. Q., Liu, X. L., Xia, C. Y., Zhang, L., Li, S. S., Jin, Z., Wu, X. L., & Shu, J. (2022). Status of maternal serum B vitamins and pregnancy outcomes: New insights from in vitro fertilization and embryo transfer (IVF-ET) treatment. Frontiers in nutrition, 9, 962212. https://doi.org/10.3389/fnut.2022.962212 
  • Budani, M. C., & Tiboni, G. M. (2020). Effects of Supplementation with Natural Antioxidants on Oocytes and Preimplantation Embryos. Antioxidants (Basel, Switzerland), 9(7), 612. https://doi.org/10.3390/antiox9070612 
  • Tsuji, A., Ikeda, Y., Murakami, M., Kitagishi, Y., & Matsuda, S. (2022). Reduction of oocyte lipid droplets and meiotic failure due to biotin deficiency was not rescued by restoring the biotin nutritional status. Nutrition Research and Practice, 16(3), 314. https://doi.org/10.4162/nrp.2022.16.3.314
  • Li, T., Wang, Y., Yu, Y., Pei, W., Fu, L., Jin, D., & Qiao, J. (2024). The NAD+ precursor nicotinamide riboside protects against postovulatory aging in vitro. Journal of Assisted Reproduction and Genetics. https://doi.org/10.1007/s10815-024-03263-x 
  • Alexandru, I., Nistor, D., Motofelea, A. C., Cadar, B., Crintea, A., Tatu, C., Pop, G. N., & Csep, A. N. (2024). Vitamins, Coenzyme Q10, and Antioxidant Strategies to Improve Oocyte Quality in Women with Gynecological Cancers: A Comprehensive Review. Antioxidants, 13(12), 1567. https://doi.org/10.3390/antiox13121567 
  • Susilo, A. F. P., Syam, H. H., Bayuaji, H., Rachmawati, A., Halim, B., Permadi, W., & Djuwantono, T. (2024). Free 25(OH)D3 levels in follicular ovarian fluid top-quality embryos are higher than non-top-quality embryos in the normoresponders group. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-71769-6 
  • Tarkesh, F., Jahromi, B. N., Hejazi, N., & Tabatabaee, H. (2020). Beneficial health effects of Menaquinone‐7 on body composition, glycemic indices, lipid profile, and endocrine markers in polycystic ovary syndrome patients. Food Science & Nutrition, 8(10), 5612–5621. https://doi.org/10.1002/fsn3.1837 
  • Saffari, S., Bahadori, M., Sharami, H., TorabZadeh, P., & Goudarzvand, M. (2015). The Relationship between Level of Vitamin C in Follicular Fluid and ‎Maturation of Oocytes and Embryo Quality in Patients Undergoing In-vitro ‎Fertilization. DOAJ (DOAJ: Directory of Open Access Journals). https://doaj.org/article/cb1df45cb9d54e96bc63fd9e8afeea5d 
  • Sidell, N., & Rajakumar, A. (2024). Retinoic Acid Action in Cumulus Cells: Implications for Oocyte Development and In Vitro Fertilization. International journal of molecular sciences, 25(3), 1709. https://doi.org/10.3390/ijms25031709
  •  Kermack, A. J., Wellstead, S. J., Fisk, H. L., Cheong, Y., Houghton, F. D., Macklon, N. S., & Calder, P. C. (2021). The Fatty Acid Composition of Human Follicular Fluid Is Altered by a 6-Week Dietary Intervention That Includes Marine Omega-3 Fatty Acids. Lipids, 56(2), 201–209. https://doi.org/10.1002/lipd.12288 
  • Tian, X., & Diaz, F. J. (2013). Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Developmental biology, 376(1), 51–61. https://doi.org/10.1016/j.ydbio.2013.01.015
  • Bernhardt, M. L., Kim, A. M., O'Halloran, T. V., & Woodruff, T. K. (2011). Zinc requirement during meiosis I-meiosis II transition in mouse oocytes is independent of the MOS-MAPK pathway. Biology of reproduction, 84(3), 526–536. https://doi.org/10.1095/biolreprod.110.086488
  • Kapper, C., Oppelt, P., Ganhör, C., Gyunesh, A. A., Arbeithuber, B., Stelzl, P., & Rezk-Füreder, M. (2024). Minerals and the Menstrual Cycle: Impacts on Ovulation and Endometrial Health. Nutrients, 16(7), 1008. https://doi.org/10.3390/nu16071008
  • Tonai, S., Nakanishi, T., Yamaoka, M., Okamoto, A., Shimada, M., & Yamashita, Y. (2023). Pre-culture with transferrin-Fe3+ before in vitro maturation improves the developmental competence of porcine oocytes matured in vitro. Reproductive medicine and biology, 22(1), e12529. https://doi.org/10.1002/rmb2.12529 
  • Chen, C., Huang, Z., Dong, S., Ding, M., Li, J., Wang, M., Zeng, X., Zhang, X., & Sun, X. (2024). Calcium signaling in oocyte quality and functionality and its application. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1411000
  • Mathews, D. M., Johnson, N. P., Sim, R. G., O’Sullivan, S., Peart, J. M., & Hofman, P. L. (2020). Iodine and fertility: do we know enough? Human Reproduction, 36(2), 265–274. https://doi.org/10.1093/humrep/deaa312